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COMMENT 

On the self-consistent field approach to polyion dimensions in 
dilute solutions 
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Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel 

Received 6 January 1987 

Abstract. We present an asymptotic analysis of a model of polyion conformations in dilute 
solutions which is based on a combination of the Poisson-Boltzmann equation and the 
self-consistent Gaussian chain model. Logarithmic corrections to power scaling are shown 
to play an important role in the case of salt-free solutions. 

The conformation of polyions in dilute ionic solutions has been considered in the past 
by several authors. One class of models [ 1,2] is based on the worm-like chain concept 
which is equivalent to an expansion near the limit of a rod-like polyion; the coiled 
state of the polyion at high salt concentrations is introduced in an ad hoc manner via 
the renormalisation of the persistence length, due to the partially screened electrostatic 
repulsion between the charged segments of the chain. Another class of models [3-61 
is based on the Gaussian chain (GC) notion which underlies the modern treatments 
of solution behaviour of flexible polymers [7]. The salt-free case has been considered 
using self-consistent field (SCF) 141 and renormalisation group [5] methods and com- 
plete stretching of the polyion was predicted by both. A combination of the SCF 

approach [8], according to which the electrostatic force on any polymer segment is 
balanced by the elastic restoring force exerted by its neighbours, and of the Poisson- 
Boltzmann ( PB) equation, which couples the ion charge densities to the electrostatic 
potential, has been used by Richmond [3] to study the limit of large concentrations 
of added (1 : 1) electrolyte. Although Richmond did not explicitly consider the salt-free 
limit of his model, his asymptotic analysis of the inner region of the polyion, in which 
the electrostatic screening due to mobile ions is negligible, has been criticised in [4]. 
While we agree with the criticism of Richmond’s analysis [4], we would like to 
emphasise that the fault lies with the asymptotic analysis of the model. Although the 
Gaussian model itself can be criticised on the grounds that it does not account for the 
‘stiffening’ of the chain due to electrostatic repulsions at low electrolyte concentrations, 
it can serve as a useful approximation for coiled polyions at high electrolyte concentra- 
tions where calculations based on worm-like models become prohibitively difficult. 
While this comment does not attempt to carry out a comprehensive analysis of the 
applicability of this model to polyelectrolytes at arbitrary salt concentrations, we show 
that the GC-PB model [3] gives the correct results in both the strong and the weak 
screening limits. 

In the following, we present the main model equations; their detailed derivation 
is given in [3]. Integrating the force balance equation relating the elastic and electro- 
static forces on the nth chain segment of length a and charge -e, which is located at 
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a distance r from the origin, we obtain the polyion charge density 

( 1/4.nr2) d n / d r  = (1/4rrr2a)(3/2a211LI)"2 (1 )  

where $ is the dimensionless electrostatic potential, in units of kbT/e (kb  is the 
Boltzmann constant and T the temperature). Assuming that the electrolyte distribution 
is determined by the Boltzmann factors e=* and  substituting the charge densities into 
the Poisson equation, we arrive at the PB equation which can be solved either numeri- 
cally or by various analytical approximation schemes [9, 101. Since we are mainly 
interested in the strong and  weak electrolyte limits, we linearise the Boltzmann factors 
and notice that, although the expansion breaks down in the salt-free limit, the resulting 
error will not affect our considerations since, in this case, the electrolyte contribution 
is negligible with respect to that of the polyion (the latter given to all orders in $). 
Scaling the distance ( r )  in units of Debye screening length K - ' ,  we write X = K T  and 
use it to define the dimensionless charge, Q = $X. This gives 

d 2 Q / d X 2  = Q+(lb/a)I3/2XQI'" (2) 

where Ib = e'/ kbT is the Bjerrum length. The above equation has to be solved for Q 
and the resulting expression for the potential should then be substituted into (1). 
Integration of ( 1 )  subject to the boundary condition r ( 0 )  = 0 gives the scaling of the 
end-to-end distance R with the degree of polymerisation (proportional to the number 
of segments, N ) .  

Since we want to derive the scaling laws governing the polyion conformation, the 
naive approach would be to assume that Q scales like a power of X, substitute it into 
(2) and obtain the leading exponent in the limits of strong electrolyte screening ( X  >> 1 
for most intrapolyion scales) and that of unscreened Coulomb repulsion ( X < <  1 ) .  
Inspection of ( 1 )  and (2) and of the definition of Q leads us to conclude that, since 
we expect R - N u ,  where v can vary between 3 (coiled polyion) and 1 (stretched 
polyion), the exponent a ( Q - X " )  has to be in the range -+Sac 1 .  We further 
observe that in the strong screening limit, X >> 1, the term on the LHS of (2) is small 
with respect to the other two and the remaining terms have to balance each other. 
This gives cy = -f and, upon substitution in ( 1 )  and integration, we obtain 

(3) 

in agreement with [3]. The polyion is thus in a random coil conformation characteristic 
of the excluded-volume-type behaviour of neutral polymers in good solvents [7]. 

When naive scaling is applied to the salt-free limit, X<< 1, we notice that the first 
term on the RHS of ( 2 )  is small with respect to the other two. Balancing the dominant 
terms, we obtain cy = 1 which leads to the expected stretched polyion exponent, v = 1 .  
However, a more careful examination reveals that the above argument is wrong since 
the coefficient of the term on the LHS of ( 2 )  vanishes when a = l !  Faced with the 
paradoxical situation in which the exponent both has to be and cannot be equal to 
unity, we attempt a solution of the form 

R - "1' 

Q - X" ln (X) .  (4) 

Now, there is a non-vanishing contribution on the L H S  of (2)  coming from the derivative 
of the In(X) term. Equating the powers of X on both sides of (2) ,  we obtain (to 
logarithmic accuracy!) that cy = 1 and hence v = 1 (again, to logarithmic accuracy), in 
agreement with [4]. Although logarithmic corrections to power scaling are usually 
neglected in leading power considerations which became commonplace in polymer 
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science [7], their appearance in (4) has a simple physical meaning. From the relation 
between the charge Q and the potential +, we find that the latter is given by 

which is the well known expression for the potential of an infinite rod, consistent with 
our conclusion that the polyion is stretchedt. Notice that if we were to neglect the 
logarithmic correction in (4), the electric field, and hence the electrostatic force on the 
charged segments, would vanish and there would be no stretching force on the polymer. 
Conversely, using the logarithmic potential of ( 5 ) ,  the stretching force on the nth 
segment scales like I / r  which (since r - n )  agrees with the n / r2  prediction of de 
Gennes et a1 [4]. 
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t Strictly speaking, we have assumed a spherically symmetric charge distribution and thus (5) can only be 
taken as an indication that the polyion becomes stretched. Notice, however, that since all rod orientations 
are equivalent in the absence of a preferred direction, radial symmetry is present even in the stretched state. 


